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Non-Oscillatory Central Schemes

for One- and Two-Dimensional MHD Equations. I.∗

Jorge Balbás†, Eitan Tadmor‡ and Cheng-Chin Wu§

August 20, 2003

Abstract

In this paper we utilize a family of high-resolution, non-oscillatory central schemes for the approximate
solution of the equations of ideal magnetohydrodynamics (MHD) in one- and two-space dimensions. We
present several prototype problems. Solutions of one-dimensional shock-tube problems is carried out using
second- and third-order central schemes [19, 18], and we use the second-order central scheme [11] which is
adapted for the solution of the two-dimensional Kelvin-Helmholtz and Orszag-Tang problems. A qualitative
comparison reveals an excellent agreement with previous results based on upwind schemes. Central schemes,
however, require little knowledge about the eigen-structure of the problem — in fact, we even avoid an explicit
evaluation of the corresponding Jacobians, while at the same time they eliminate the need for dimensional
splitting. The one- and two-dimensional computations reported in this paper demonstrate the remarkable
versatility of central schemes as black-box, Jacobian-free MHD solvers.

AMS subject classification: Primary 65M10; Secondary 65M05

Key words. Multidimensional conservation laws, ideal Magnetohydrodynamics (MHD) equations, high-resolution
central schemes, non-oscillatory reconstructions, Jacobian-free form.

1 Introduction

In this paper we present second- and third-order non-oscillatory central schemes for the approximate solution
of the equations of ideal Magnetohydrodynamics

ρt = −∇ · (ρv), (1.1)

(ρv)t = −∇ · [ρvv> + (p +
1
2
B2)I3×3 −BB>], (1.2)

Bt = ∇× (v×B), (1.3)

et = −∇ ·
[( γ

γ − 1
p +

1
2
ρv2

)
v− (v×B)×B

]
. (1.4)

Here, ρ and e are scalar quantities representing respectively, the mass density and the total internal energy,
v = (vx, vy, vz)> is the velocity field with L2-norm v2 := ‖v‖2, and B = (Bx, By, Bz)> and B2 := ‖B‖2
represent the magnetic field and its L2-norm. Finally, the pressure p is coupled to the internal energy, e =
1
2ρv2 + 1

2B2 +p/(γ−1), where γ is the (fixed) ratio of specific heats. The system is augmented by the solenoidal
constraint ∇ ·B = 0; that is, if the condition ∇ · B = 0 is satisfied initialy at t = 0, then by (1.3) it remains
invariant in time.

The intrinsic complexity of these MHD equations suggests the class of central schemes as an efficient alter-
native for the class of upwind schemes, for computing approximate solutions the MHD problems (1.1)–(1.4).

∗Research was supported in part by NSF Grant No. 01-07428 (J.B. and E.T.), by ONR Grant No. N00014-91-J-1076 (E.T.)
NSF VIGRE Grant (J.B.) and by NASA grant No. NAG5-12986 (C.C. W.).
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Physical Science and Technology (IPST), University of Maryland, MD 20742. e-mail: tadmor@cscamm.umd.edu
§Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, email: wu@physics.ucla.edu
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The central schemes we use in this paper are based on the evolution of cell averages over staggered grids. The
staggered versions of central schemes introduced in [19, 18, 11], are presented in §2.1 and §2.2. Central schemes
eliminate the need for a detailed knowledge of the eigen-structure of the Jacobian matrices. Instead of (ap-
proximate) Riemann solvers as building blocks for upwind schemes, simple quadrature formulae are used for
the time evolution of central schemes. This approach not only saves the costly characteristic decomposition of
the Jacobians, but in fact, it allows us to completely avoid the costly evaluations of 7× 7 and 8× 8 Jacobian
matrices in one- and two-space dimensions. Moreover, central schemes eliminate the need for dimensional split-
ting which is particularly relevant for the multidimensional MHD system. Indeed, it is known that dimensional
splitting may face difficulties with the propagation of other than genuinely nonlinear waves, e.g., in the weakly
hyperbolic cases reported in [13], [8], [11]; we recall that the MHD equations consist of such waves according
to a main observation of [2]. The resulting central schemes are black-box, Jacobian-free MHD solvers whose
sole input is the computed MHD fluxes. The fact that despite their simplicity these central solvers are able to
resolve accurately the complexity of one- and in particular two-dimensional MHD waves, is the main issue of
this paper. We demonstrate this point with a series of numerical simulations.

In this paper we focus on five prototype MHD problems. We use second- and third-order non-oscillatory
central schemes to compute the approximate solution of the one-dimensional Brio-Wu shock tube models [2].
Two different MHD shock tube problems are studied in §3.1 and §3.2. The second order Jiang-Tadmor central
scheme [11] is implemented for the approximate solution of three MHD models in two dimensions. In §4.1
we consider the Kelvin-Helmholtz transverse instability problem in both periodic and convective formulations
studied earlier by e.g., [23, 12], and in §4.2 we study the Orszag-Tang MHD vortex system, [20], [21]. Unlike
the Brio-Wu and Kelvin-Helmholtz problems, the numerical solution of the Orszag-Tang vortex system does
not necessarily preserve the divergence constraint, ∇·B = 0. To enforce the latter, a Leray projection corrector
is implemented at the end of each time-step, replacing the computed magnetic field with its divergence free
projection.

Our results are found to be in excellent agreement with previous simulations of the same problems carried
out with upwind-type schemes, [2, 23, 12], and complement the results of Wu and Chang [25], and the more
recent results for relativistic MHD flows obtained with central-upwind schemes by Del Zanna et. al. in [6, 7].
These results demonstrate the ability of central schemes to detect and resolve the discontinuous solutions that
characterize these models, while retaining efficiency and simplicity. Indeed, the one- and two-dimensional
reported in this paper demonstrate the remarkable versatility of central schemes as black-box, Jacobian-free
solvers for MHD computations. We conclude this paper with a two-page appendix which provides the complete
2D central code for the convective Kelvin-Helmholtz problem.

2 The Numerical Methods

We approximate the solution of (1.1)–(1.4) using predictor-corrector central schemes which are implemented
over staggered grids. The schemes have two main ingredients: #1. A non-oscillatory piecewise polynomial
reconstruction of pointvalues from their cell averages; followed by #2. Realizing the evolution of these re-
constructed polynomials in terms of their staggered cell averages. Following is a description of the one- and
two-dimensional schemes together with the magnetic field corrector which we use for the calculations reported
in §3 (one-dimensional results) and §4 (two-dimensional results).
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Figure 2.1: Central differencing by Godunov-type scheme

2.1 One Dimensional Methods

We begin by writing the system of equations (1.1)–(1.4) in its conservative form

ut + f(u)x = 0, (2.1)

with

u = (ρ, ρvx, ρvy, ρvz, By, Bz, e)>, (2.2)
f(u) = (ρvx, ρv2

x + p∗ −B2
x, ρvxvy −BxBy, ρvxvz −BxBz, Byvx − Bxvy,

Bzvx −Bxvz , (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))>, (2.3)

and where p∗ = p + 1
2B2 stands for the total pressure (static plus magnetic).

Next, we follow Godunov’s seminal idea for the approximation of discontinuous solutions of conservation laws.
Using the formulation in [18] we consider the sliding averages, ū(x, t) := 1

∆x

∫ x+∆x/2

x−∆x/2
u(ξ, t)dξ; the conservation

law (2.1) then reads

ūt(x, t) +
1

∆x

[
f(u(x +

∆x

2
, t))− f(u(x− ∆x

2
, t))

]
= 0. (2.4)

Introducing a small time step ∆t, and integrating over the slab t < τ < t + ∆t we arrive at

ū(x, t + ∆t) = ū(x, t)− 1
∆x

∫ t+∆t

t

[
f(u(x +

∆x

2
, τ))− f(u(x− ∆x

2
, τ))

]
dτ. (2.5)

So far, (2.5) is exact. The solution to (2.5) is now realized at the discrete time level tn = n∆t by a piecewise
polynomial approximation, w(x, tn) ∼ u(x, tn), which takes the form

w(x, tn) =
∑

pj(x)χj(x), χj(x) := 1Ij . (2.6)

Here, pj(x) are algebraic polynomials supported on the discrete cells Ij = Ixj = [xj+ 1
2
, xj+ 1

2
] with interfacing

breakpoints at the half-integers gridpoints, xj± 1
2

= (j ± 1
2 )∆x. Sampling (2.5) at x = xj+ 1

2
, we arrive at the

new staggered cell averages, w̄n+1
j+ 1

2
, centered at Ij+ 1

2
= Ix

j+ 1
2
,

w̄n+1
j+ 1

2
=

1
∆x

∫

I
j+ 1

2

w(x, tn)dx− 1
∆x

[∫ tn+1

tn

f(w(xj+1, t))dt−
∫ tn+1

tn

f(w(xj , t))dt

]
. (2.7)

The evaluation of the expressions on the right of (2.7) proceeds in two steps, which will occupy the rest of this
section.
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The first step starts with the known cell averages, {w̄n
j }j , which are used to reconstruct a non-oscillatory

piecewise polynomial approximation w(x, tn) =
∑

j pj(x)χj(x). We use piecewise linear functions in the second
order case,

pj(x) = w̄n
j + w′

j(
x − xj

∆x
),

and piecewise quadratic functions in the third order case,

pj(x) = wn
j + w′

j(
x − xj

∆x
) +

1
2
w′′

j (
x− xj

∆x
)2.

Here, wn
j , w′

j , and w′′
j are the approximate point values and the first and second derivatives of w(x, tn) at

x = xj , which are reconstructed from the given cell averages, {w̄n
j }j . Several approximations for these numerical

derivatives are available within the accuracy constraints of the schemes. It should be noted that the procedure
for reconstruction of point values and couple of numerical derivatives from the given cell averages is at the
heart of high-resolution, non-oscillatory central schemes. In particular, such reconstructions should satisfy the
following three essential properties:

• P1 — Conservation of cell averages: p̄j(x)|x=xj
= w̄n

j

• P2 — Accuracy: w(x, tn) = u(x, tn)+O((∆x)r) for r- order accurate method, wherever u(·, t) is sufficiently
smooth.

• P3 — Non-oscillatory behavior of
∑

j pj(x)χj(x) which is characterized in different ways for different
reconstructions.

Few examples are in order. For the second-order results presented in §3, we use1

w′
j = MinMod(α∆+w̄j , ∆0w̄j , α∆−w̄j), 1 ≤ α < 4. (2.8)

Here, MinMod stand for van-Leer’s limiter, [16], where MinMod(a, b, c) = sign(a) min(|a|, |b|, |c|) if sign(a) =
sign(b) = sign(c), and it vanishes otherwise. It follows that this reconstruction procedure is non-oscillatory
in the sense of satisfying a maximum principle, supx |

∑
j pj(x)χj(x)| ≤ supx |

∑
j w̄n

j χj(x)|. Moreover, for a
restricted set of α-values, this MinMod-based reconstruction is Total-Variation Diminishing (TVD),

‖
∑

j

pj(x)χj(x)‖TV ≤ ‖
∑

j

w̄n
j χj(x)‖TV ,

and hence the corresponding central scheme is TVD, [19]. For the third-order case we use

w′
j = θj∆0w̄

n
j , (2.9)

w′′
j = θj∆+∆−w̄n

j , (2.10)

wn
j = w̄n

j −
w′′

j

24
, (2.11)

where θj stands for the third order limiters specified in [18], which guarantee the non-oscillatory behavior of
the resulting central schemes, this time with a Number of Extrema Diminishing (NED) and shape preserving
properties (we observe that starting with third-order accuracy, the pointvalues wn

j differ from the cell averages,
w̄n

j ). Higher order non-oscillatory extensions are offered by the Essentially non-oscillatory (ENO) reconstructions
of Harten et. al., e.g., [9], and their implementation with central schemes can be found in e.g., [17].
Once w(x, tn) is realized as a piecewise polynomial, w(x, tn) =

∑
pj(x)χj(x), it is integrated exactly over the

interval Ij+ 1
2

to compute the staggered cell averages on the right of (2.7)

1
∆x

∫

I
j+ 1

2

w(x, tn)dx =
1

∆x



∫ xj+

1
2

xj

pj(x)dx +
∫ xj+1

x
j+ 1

2

pj+1(x)dx


 =

1
2
[w̄n

j + w̄n
j+1] +

1
8
[w′

j − w′
j+1].(2.12)

1Where ∆± and ∆0 stand for the usual differences, ∆±wj = ±(wj±1 − wj), and ∆0 = 1
2
(∆+ + ∆−)
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We turn to the second step in the construction of the central scheme. Here we follow the evolution of the
reconstructed point values, {w(xj , τ ≥ tn)}j , along the midcells, x = xj , which are governed by

wt + f(w)x = 0, τ ≥ tn; w(x, tn) = pj(x), x ∈ Ij (2.13)

If {ak(u)}k are the eigenvalues of the Jacobian A(u) := ∂f
∂u , then by hyperbolicity, information regarding the

interfacing discontinuities at (xj± 1
2
, tn) propagates no faster than maxk |ak(u)|. Hence, the midcell values,

{w(xj , τ ≥ tn)}j , remain free of discontinuities as long as the CFL condition, ∆t ≤ 1
2 · maxk |ak(u)|, is met.

Therefore, the flux integrals in the right of (2.7) involve only smooth integrands and can be evaluated with
appropriate quadrature rules to any desired degree of accuracy. In particular, the second order Nessyahu-
Tadmor scheme [19] makes use of the midpoint rule

∫ tn+1

tn

f(w(xj , τ))dτ ≈ ∆tf(wn+ 1
2

j ),

while the third order Liu-Tadmor scheme [18] makes use of Simpson’s rule

∫ tn+1

tn

f(w(xj , τ))dτ ≈ ∆t

6

[
f(wn

j ) + 4f(wn+ 1
2

j ) + f(wn+1
j )

]
.

These quadrature formulae require the computation of the intermediate point values wn+β
j , β = 0, 1

2 , 1. A
natural approach for computing these point values employs Taylor’s expansion and the differential equation
(2.1), wt = −f(w)x. The resulting predictor step in the second order case reads

w
n+ 1

2
j = w̄n

j −
λ

2
f ′

j , fj = f(wn
j ). (2.14)

Here λ = ∆t/∆x is the fixed mesh ratio and f ′
j is an approximate numerical derivative — an approximation

to the spatial derivative f ′
j/∆x ≈ f(wn

j )x. Different recipes for numerical derivatives are available within the
accuracy constraints of our calculations. We shall mention two of them which retain the overall second-order
accuracy, consult [19]. In the first approach we utilize the chain rule, f(w)x = A(w)wx. With A(wn

j ) standing
for the computed Jacobian and w′

j denoting the reconstructed numerical derivative, w′
j/∆x ≈ w(xj , t

n)x, we
have

f ′
j = A(wn

j )w′
j , w′

j = MinMod(α∆+w̄j , ∆0w̄j , α∆−w̄j). (2.15)

Alternatively, we can implement a spatial MinMod limiter directly for numerical differentiation of the grid
function {fj = f(wn

j )}j ,

f ′
j = MinMod(α∆+fj , ∆0fj , α∆−fj), fj = f(wn

j ). (2.16)

Remark that the resulting predictor-step (2.14),(2.16) completely avoids the evaluation of the Jacobian A(wn
j ).

Similar recipes are available for the third order predictor,

wn+β
j = wn

j − λβ{f(wn
j −

λβ

2
f ′

j)}′, β =
1
2
, 1. (2.17)

As before, the evaluation of the expression on the right of (2.17) can utilize the chain rule,

f
(
w − λβ

2
f(w)x

)
x

= f
(
w − λβ

2
A(w)wx

)
x

= A(w)wx −
λβ

2
(
A2(w)wx

)
x

+O(λ)2.

Using the third-order accurate numerical derivative in (2.9), we end up with two possible recipes for computing
the third-order accurate predicted mid-values, {f(wn

j −
λβ
2 f ′

j)}′ in (2.17),

{f(wn
j −

λβ

2
f ′

j)}′ = θj∆0{f(wn
j −

λβ

2
A(wn

j )w′
j)}, β =

1
2
, 1, w′

j = θj∆0wj , (2.18)

{f(wn
j −

λβ

2
f ′

j)}′ = A(wn
j )w′

j −
λβ

2
θj∆0{A(wn

j )2w′
j}, β =

1
2
, 1, w′

j = θj∆0wj . (2.19)
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A third possibility, a so-called Jacobian-free-form (JFF) alternative is provided by

{f(wn
j −

λβ

2
f ′

j)}′ = θj∆0

(
f
(
wn

j −
λβ

2
∆0(f(wn

j ))
))

, β =
1
2
, 1. (2.20)

Again, the computation of the intermediate values wn+β
j in (2.20) avoids the explicit evaluation of the

Jacobians, A(wn
j ). The high-resolution of these Jacobian-free versions (2.16) and (2.20) is evident in the

numerical results reported in §3. The intermediate values wn+β
j can also be approximated by Runge-Kutta

solvers of the ODE wτ = f̂x|x=xj , w(xj , 0) = wn
j , τ > tn, where f̂x stands for the numerical derivative of f . This

approach offers yet another avenue for the time evolution of central schemes: in particular, we mention in this
context the efficient evolution procedure based on higher order Runge-Kutta Natural Continuous Extensions,
e.g., [3, 17], which significantly reduces the number of computations per grid point.

Equipped with the predicted point values, we are set to evaluate the integrals on the right hand side of (2.7).
They are approximated by the midpoint rule in the second order case,

∫ tn+1

tn

f(w(xj , τ))dτ ≈ ∆tf(wn+ 1
2

j ) =: ∆tf
n+ 1

2
j , (2.21)

and by Simpson’s rule in the third order case,

∫ tn+1

tn

f(w(xj , τ))dτ ≈ ∆t

6
[f(wn

j ) + 4f(wn+ 1
2

j ) + f(wn+1
j )] =: ∆tf

n+ 1
2

j . (2.22)

Denoting these approximate values of the flux integrals by f
n+ 1

2
j , the corrector step for both the second- and

third-order central schemes amount to the same statement,

w̄n+1
j+ 1

2
=

1
2
[w̄n

j + w̄n
j+1] +

1
8
[w′

j − w′
j+1]− λ

[
f

n+ 1
2

j+1 − f
n+ 1

2
j

]
. (2.23)

2.2 Two Dimensional Method

We begin the description of the two-dimensional scheme by writing (1.1)-(1.4) in conservation form

ut + f(u)x + g(u)z = 0, (2.24)

where

u = (ρ, ρvx, ρvy, ρvz , Bx, By, Bz, e)>, (2.25)
f(u) = (ρvx, ρv2

x + p∗ −B2
x, ρvxvy −BxBy, ρvxvz −BxBz, 0, Byvx −Bxvy ,

Bzvx −Bxvz, (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))>, (2.26)
g(u) = (ρvz , ρvzvx −BzBx, ρvzvy −BzBy, ρv2

z + p∗ −B2
z , Bxvz −Bzvx,

Byvz −Bzvy , 0, (e + p∗)vz −Bz(Bxvx + Byvy + Bzvz))>. (2.27)

We introduce space scales ∆x and ∆z, and consider the sliding averages of (2.24) over the two dimensional cell
[x− ∆x

2 , x + ∆x
2 ]× [z − ∆z

2 , z + ∆z
2 ]

ūt(x, z, t) +
1

∆x∆z

∫ z+∆z
2

z−∆z
2

[f(u(x +
∆x

2
, η, t))− f(u(x− ∆x

2
, η, t))]dη

+
1

∆x∆z

∫ x+∆z
2

x−∆x
2

[g(u(ξ, z +
∆z

2
, t))− g(u(ξ, z − ∆z

2
, t))]dξ = 0 (2.28)

We proceed along the same lines of the one dimensional case; integration over the slab t ≤ τ ≤ t + ∆t is
performed, and the solution of the resulting equation is approximated at time level tn = n∆t by a piecewise
bilinear polynomial w(x, z, tn) =

∑
pjk(x, z)χjk(x, z), where χjk(x, z) = 1Ixj

×Izk
is the characteristic function

6



of the control volume Ixj × Izk
. Choosing x = xj+1/2, and z = zk+1/2 as the interfacing boundaries, the two

dimensional version of equation (2.7) reads

w̄n+1
j+ 1

2 ,k+ 1
2

= w̄n
j+ 1

2 ,k+ 1
2

− 1
∆x∆z

∫ tn+1

tn

∫ zk+1

zk

[f(w(xj+1 , z, t))− f(w(xj , z, t))]dzdt

− 1
∆x∆z

∫ tn+1

tn

∫ xj+1

xj

[g(w(x, zk+1, t))− g(w(x, zk, t))]dxdt. (2.29)

The reconstruction of the point values w(x, z, tn) is carried out using piecewise bilinear functions pjk(x, z) =
w̄n

jk + w′
jk(x−xj

∆x ) + ẁjk( z−zk

∆z ), with the approximate numerical derivatives in the x and z directions given by

w′
jk = MinMod(α∆+xw̄n

jk , ∆0xw̄n
jk , α∆−xw̄n

jk), (2.30)
w8

jk = MinMod(α∆+zw̄
n
jk , ∆0zw̄

n
jk , α∆−zw̄

n
jk). (2.31)

These piecewise polynomials admit the following cell averages on the right of (2.29)

w̄n
j+ 1

2 ,k+ 1
2

=
∫ x

j+ 1
2

xj

∫ z
k+ 1

2

zk

pjk(x, z)dzdx +
∫ xj+1

x
j+ 1

2

∫ z
k+1

2

zk

pj+1,k(x, z)dzdx

+
∫ x

j+ 1
2

xj

∫ zk+1

z
k+1

2

pj,k+1(x, z)dzdx +
∫ xj+1

x
j+ 1

2

∫ zk+1

z
k+1

2

pj+1,k+1(x, z)dzdx

=
1
4
(w̄n

jk + w̄n
j+1,k + w̄n

j,k+1 + w̄n
j+1,k+1)

+
1
16

[
(w′

jk − w′
j+1,k) + (w′

j,k+1 − w′
j+1,k+1) + (w8

jk − w8
j,k+1) + (w8

j+1,k − w8
j+1,k+1)

]
. (2.32)

The reconstruction procedure described above enjoys the conservation, accuracy and non-oscillatory properties,
P1–P3, analogous to those listed for one dimensional schemes in §2.1. In particular, the non-oscillatory property
in this case is characterized by the scalar maximum principle, consult [11].

To approximate the flux integrals on the right of (2.29), we first predict the midpoint values

w
n+ 1

2
jk = w̄n

jk −
λ

2
f ′

jk −
µ

2
g8

jk , (2.33)

where λ = ∆t/∆x and µ = ∆t/∆z are the (fixed) mesh ratios in the x and z directions, and f ′
jk and g8

jk stand
for the numerical slopes of f(w) and g(w). In this case, we choose the Jacobian free form

f ′
jk = MinMod(α∆+xfjk, ∆0xfjk, α∆−xfjk), (2.34)

g8
jk = MinMod(α∆+zgjk, ∆0zgjk, α∆−zgjk). (2.35)

In the computations below we set the free parameter α = 1.4. The flux integrals are then approximated by the
midpoint rule in time, and by second order rectangular quadrature in space

∫ tn+1

tn

∫ zk+1

zk

f(w(xj+1, z, t))dzdt ∼ ∆z∆t

2

[
f(wn+ 1

2
j+1,k) + f(wn+ 1

2
j+1,k+1)

]
, (2.36)

∫ tn+1

tn

∫ xj+1

xj

g(w(x, zk+1, t))dxdt ∼ ∆x∆t

2

[
g(wn+ 1

2
j+1,k+1) + g(wn+ 1

2
j,k+1)

]
. (2.37)
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The new staggered cell averages {w̄n+1
j+ 1

2 ,k+ 1
2
}j,k read

w̄n+1
j+ 1

2 ,k+ 1
2

=
1
4
(w̄n

jk + w̄n
j+1,k + w̄n

j,k+1 + w̄n
j+1,k+1)

+
1
16

(w′
jk − w′

j+1,k)− λ

2

[
f(wn+ 1

2
j+1,k)− f(wn+ 1

2
jk )

]

+
1
16

(w′
j,k+1 − w′

j+1,k+1)−
λ

2

[
f(wn+ 1

2
j+1,k+1)− f(wn+ 1

2
j,k+1)

]

+
1
16

(w8
jk − w8

j,k+1)−
µ

2

[
g(wn+ 1

2
j,k+1)− g(wn+ 1

2
jk )

]

+
1
16

(w8
j+1,k − w8

j+1,k+1)−
µ

2

[
g(wn+ 1

2
j+1,k+1)− g(wn+ 1

2
j+1,k)

]
. (2.38)

In addition to reconstruction and evolution, our second-order two-dimensional scheme requires the correction
of the magnetic field, B, in order to guarantee the solenoidal constraint ∇ ·B = 0. We satisfy this constraint
by updating the cell averages of the magnetic field at the end of each time step, replacing the computed B,
with its divergence-free projection, Bc. To this end the so called Leray projection is carried out by solving the
Poisson equation

∆φ = −∇ ·B (2.39)

with the appropriate boundary conditions. Since the coplanar structure of the problem guarantees ∂By/∂y = 0,
only the components Bx and Bz need to be updated. We use a fast Poisson solver for the standard five point
discretization of the potential φ, and central differences for the divergence of the magnetic field, ∇ · B. The
corrected–divergence free–magnetic field, Bc, is then realized as

Bc = B +∇φ. (2.40)

Applying the divergence operator∇ = (∂/∂x, ∂/∂z) to both sides of (2.40), one can easily verify that ∇·Bc = 0.
We use here only one out of several methods to enforce the so-called ‘constrained transport’ and we refer the
reader to [1], [22] and the references therein for a general discussion and [10] for handling the solenoidality
constraint in the context of MHD schemes over staggered grids.

3 One Dimensional Numerical Results

In this section we present numerical simulations of the one-dimensional MHD equations (2.1)–(2.3). The results
were obtained using different versions of the second-order Nessyahu–Tadmor central scheme (2.14)–(2.16), (2.21),
(2.23), based on the minmod limiter (2.8), and third-order Liu–Tadmor central scheme, (2.17)–(2.20), (2.22)–
(2.23), based on the non-oscillatory limiter (2.9)–(2.11). The schemes are implemented for the approximate
solution of two coplanar shock tube MHD models described by Brio and Wu in [2]. We use a uniform grid in
the space discretization, and in both cases we choose the time step dynamically with CFL restriction

∆t = 0.4
∆x

maxk |ak(u)|
(3.1)

where {ak(u)}k are the eigenvalues of the Jacobian matrix of f(u).

3.1 Brio–Wu Shock Tube Problem

The first one dimensional Riemann problem we consider consists of a shock tube with two initial equilibrium
states, ul and ur,

(ρ, vx, vy, vz, By, Bz, p)> =
{

(1.0, 0, 0, 0, 1.0, 0, 1.0)> for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)> for x > 0,

(3.2)

and complemented with the constant values of Bx ≡ 0.75 and γ = 2. The problem is solved for x ∈ [−1, 1]
with 800 grid points, and numerical results are presented at t = 0.2. Figures 3.2–3.5 show the density, the
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x− and y−velocity components, the y−magnetic field, and pressure profiles computed with different choices of
numerical derivatives f ′

j and u′
j .

We note that the hydrodynamical data of this problem is the same as that in Sod’s shock tube problem of
gas dynamics. The variety of MHD waves, however, poses a considerable challenge for high-resolution methods
such as the JFF central schemes described in this paper. The solution of this problem consists of a left–moving
fast rarefaction wave (FR), a slow compound wave (SM) which results from an intermediate shock that changes
By from 0.58 to −0.31 and a slow rarefaction that changes By from −0.31 −0.53, a contact discontinuity (C),
a right–moving slow shock (SS), and a right–moving fast rarefaction wave (FR). Note that the solution to this
problem is not unique if Bz and vz are not identically zero.

Figures 3.2–3.5 show the solutions calculated with different versions of the second and third order schemes.
These results are comparable with the second order upwind computations of Brio and Wu in [2], and with the
fifth order WENO computations presented by Jiang and Wu in [12]. Our numerical results demonstrate that
central schemes — while avoiding any characteristic information other than an estimate of the maximal speed
maxk |ak(u)|, they still capture the main features of the discontinuous MHD solutions.

In figures 3.4 and 3.5 we observe the third order oscillations near the trailing edge of the fast rarefaction wave
that are less evident with the second order results. This is due to the higher order polynomial reconstruction;
indeed, the same phenomenon is reported in [12] when comparing fifth order WENO with second order results. A
final remark regarding the Jacobian Free Forms (JFF), (2.16), (2.20): not only that they offer a more economical
approach by avoiding costly matrix multiplication, but they also provide a better control of these oscillations
as well as a better resolution of the contact discontinuity (C); in particular, they allow the expected jump in
the density profile without disrupting the constant state of the remaining conserved quantities.
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Figure 3.2: Results of Brio-Wu shock tube problem at t = 0.2 computed with 800 grid points using the second
order central scheme. Here f ′

j is computed componentwise with the minmod limiter using the JFF version
(2.16) with α = 1.4.
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Figure 3.3: Results of Brio-Wu shock tube problem at t = 0.2 computed with 800 grid points using the second
order central scheme. Here, the numerical flux, f ′

j = A(wn
j )w′

j , is evaluated using the minmod limiter (2.15)
with α = 1.4.
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Figure 3.4: Results of Brio-Wu shock tube problem at t = 0.2 computed with 800 grid points using the third
order central scheme. Here f ′

j are computed component-wise using the JFF version (2.20) with α = 1.4.
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Figure 3.5: Results of Brio-Wu shock tube problem at t = 0.2 computed with 800 grid points using the third
order central scheme. Here, the intermediate numerical fluxes, {f(wj − λβ/2f ′

j)}′, β = 0, 1
2 , 1, are evaluated

using the third-order limiter (2.18) with α = 1.4.

3.2 Brio–Wu High Mach Shock Tube Problem

The following shock tube model proposed by Brio and Wu in [2], is used to check the robustness of the numerical
schemes for high Mach number problems. The initial equilibrium states, ul and ur, are given by

(ρ, vx, vy, vz, By, Bz, p)> =
{

(1.0, 0, 0, 0, 1.0, 0, 1000)> for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)> for x > 0,

(3.3)

complemented with the values of Bx ≡ 0, and γ = 2. The Mach number of the right–moving shock wave is
15.5. If the plasma pressure is replaced by the sum of the static and magnetic pressures–denoted by p∗ above,
the problem becomes a standard hydrodynamical Riemann problem. The solution is presented at t = .012,
x ∈ [−1, 1], with 200 grid points and with CFL number 0.4, consult (3.1).
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Figure 3.6: Results of Brio-Wu high Mach problem at t = 0.012 computed with 200 grid points using second
order central scheme. Here f ′

j are computed component-wise using the JFF (2.16) with α = 1.4.
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Figure 3.7: Results of Brio-Wu high Mach problem at t = 0.012 computed with 200 grid points using third
order central scheme. Here, the intermediate numerical fluxes, {f(wj − λβ/2f ′

j)}′, β = 0, 1
2 , 1, are evaluated

using the third-order limiter (2.18) with α = 1.4.
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The solution of this second Riemann problem consists of a left–moving fast rarefaction wave (FR), followed
by a tangential discontinuity (TD), and a right moving fast shock (FS) with Mach number 15.5. Across the
tangential discontinuity, the density, the magnetic field and the pressure can change, but both, the fluid velocity
and the total pressure are continuous.

As in the previous problem, our results are comparable to those obtained by Brio and Wu in [2] with their
second order upwind method and the ones presented by Jiang and Wu in [12], computed with a fifth order
WENO scheme. These results indicate that the methods described above are robust even in their ‘greedy’,
Jacobian-free version.

4 Two Dimensional Numerical Results

In this section we present the numerical solutions of two prototype models of two–dimensional MHD equations.
For the first problem — the Kelvin–Helmholtz instability with transverse magnetic field configuration, we
consider two different sets of boundary conditions in the x−direction: periodic in the first case and a free
outflow boundary in the second convective setup. The second Orszag-Tang problem introduced by Orszag
and Tang in [20] as a simple model to study MHD turbulence, and has become a standard model to validate
numerical algorithms. In both cases, the time scale, ∆t is determined dynamically with CFL=0.4,

∆t =
0.4

(maxk |ak(u)|/∆x) + (maxk |bk(u)|/∆z)
(4.1)

where {ak(u)}k and {bk(u)}k represent the eigenvalues of the Jacobian matrices of f(u) and g(u) respectively.

4.1 Transverse Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability arises when two superposed fluids flow one over the other with a relative veloc-
ity. It models, for example, the important mechanism for the momentum transfer at the Earth’s magnetopause
boundary, which separates the solar wind from the Earth’s magnetosphere, [12]. We apply the second order
central scheme of Jiang and Tadmor, (2.33)–(2.38), for the two dimensional periodic and convective models
with transverse magnetic field configuration.

In both cases, the governing equations are (2.24)–(2.27) are subject to initial conditions

(ρ, vx, vy, vz , Bx, By, Bz, p)> = (1.0, vx0 + ṽx0, 0, 0, 0, 1.0, 0, 0.5)>, (4.2)

where

vx0 =
v0

2
tanh

(z

a

)
, and (4.3)

ṽx0 =
{
−ṽ0 sin ( 2πx

λ ) 1
1+z2 , if− λ

2 < x < λ
2

0, otherwise,
(4.4)

with v0 = 2, ṽ0 = −0.008, λ = 5π and a = 1. Also, the grids are stretched in the z−direction with a Roberts
transformation

z ← H sinh (τz/2H)
sinh (τ/2)

, τ = 6, (4.5)

which renders a denser grid near z = 0 where the effect of the small initial perturbation ṽx0 is more noticeable,
and a coarser grid near z = ±H , where little action takes place.

In the periodic case, the computational domain is [−L
2 , L

2 ]×[0, H ], with L = 5π and H = 10. The free outflow
condition is applied at the top boundary, z = H , and the bottom boundary values are recovered by symmetry,
since ρ, p, and By are symmetric, and vx and vz are antisymmetric under the transformation (x, z)→ (−x,−z).
In figure (4.8), we present solutions at t = 144, with 96× 96 and 192× 192 grid points.

The resolution and accuracy of our results are comparable to those achieved by the second order gas kinetic
scheme of Tang and Xu, [23] using a 200 × 200 uniform grid, and to those achieved by Jiang and Wu’s fifth
order WENO scheme, [12], obtained with a coarser grid. It should be noted, however, that in the case of central
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schemes, the additional computational cost generated by thinner grids is compensated by the simplicity of the
algorithm: no characteristic decompositions are computed, no Jacobians are required and dimensional splitting
is avoided.

In the convective setup, the initial conditions and perturbation are the same as in the periodic setup, (4.2)–
(4.4). In this case, the free outflow condition is applied to all four boundaries of the computational domain
[−L

2 , L
2 ]× [−H, H ]; Here H = 20 and L = 55π, with L >> λ–so chosen to allow the excitation to convect freely

without disturbing the x−boundaries.
Figures 4.9 and 4.10 display the solution computed with 1056 × 192 grid points at t = 120 and t = 145

respectively. As in the periodic case, our results are comparable to those previously obtained with upwind
schemes, [12, 23], and demonstrate the ability of central schemes to detect and resolve steep gradients without
any detailed knowledge of the eigen structure of the Jacobian matrix.
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Figure 4.8: Results of transverse Kelvin-Helmholtz instability with periodic x−boundary conditions. Left
column uses 96×96 points and right column uses 192×192 grids respectively. There are 20 contours for density
and pressure. Red–high value, blue–low value. Density ranges from 0.79 to 1.2, pressure range from 0.32 to
0.71 and maximum value for the velocity is 1.25.

14



−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

x

z

ρ

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

x

z

p

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

Figure 4.9: Solution of convective Kelvin-Helmholtz instability at t=120 with 1056 × 192 grid points. The
density ranges from 0.63 to 1.3, and the pressure ranges from 0.20 to 0.85, the maximum value for the velocity
is 1.54.

15



−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

x

z

ρ

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

x

z

p

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

v
xz

x

z

Figure 4.10: Solution of convective Kelvin-Helmholtz instability at t=145, with 1056 × 192 grid points. The
Density ranges from 0.43 to 1.3, pressure ranges from 0.10 to 0.86 and maximum value for the velocity is 1.94.

0 50 100 150
−5

−4

−3

−2

−1

0

1

2

t

Figure 4.11: Time evolution of the total transverse kinetic energy, log( 1
2

∫
ρv2

zdxdz), integrated over
[−L/2, L/2] × [−H, H ], for both periodic and convective Kelvin-Helmholtz instability. The results for the
periodic case with 96×96 and 192×192 grid points are represented by a dashed and a doted curve respectively.
The convective configuration is represented by a solid line.

16



4.2 Orszag–Tang MHD Turbulence Problem

This model considers the evolution of a compressible Orszag-Tang vortex system. The evolution of the vortex
system involves the interaction between several shock waves traveling at various speed regimes [12, 24], which
makes the problem especially attractive for numerical experiments.

The initial data is given by

ρ(x, z, 0) = γ2, vx(x, z, 0) = − sin z, vz(x, z, 0) = sin x,

p(x, z, 0) = γ, Bx(x, z, 0) = − sin z, Bz(x, z, 0) = sin 2x

where γ = 5/3. With this initial data, the root mean square values of the velocity and magnetic fields are both
1; the initial average Mach number is 1, and the average plasma beta is 10/3.

We solve the problem in [0, 2π]× [0, 2π], with periodic boundary conditions in both x- and z-directions using
a uniform grid with 384× 384 points.

In this problem, the numerical scheme fails to satisfy the divergence free constraint of the magnetic field,
∇·B = 0. In order to guarantee this condition and avoid numerical instability, we project the updated magnetic
field B into its divergence free component at the end of every time iteration by applying the correction (2.39)–
(2.40).
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Figure 4.12: Orszag–Tang MHD turbulence problem with a 384 × 384 uniform grid at t = 0.5. There are 12
contours for density and pressure. Red–high value, blue–low value. Density range from 2.1 to 5.8, pressure
range from 1.0 to 5.7. The maximum values of |v| and |B| are 1.6 and 1.6 respectively.

Figures (4.12), (4.13), and (4.14) present the solution of the Orszag-Tang vortex system at t = 0.5, t = 2,
and t = 3 respectively. Again, these results are comparable with those obtained by upwind schemes. The
lower order of our methods require a thinner grid than Jiang and Wu’s fifth order WENO scheme for resolving
accurately the various shocks that the vortex system develops. However, this relative loss of efficiency is still
compensated by the simplicity in the implementation of the schemes.
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Figure 4.13: Orszag–Tang MHD turbulence problem with a 384 × 384 uniform grid at t = 2. There are 12
contours for density and pressure. Red–high value, blue–low value. Density ranges from 0.62 to 6.3, pressure
ranges from 0.14 to 7.0. The maximum values of |v| and |B| are 1.6 and 2.8 respectively.
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Figure 4.14: Orszag–Tang MHD turbulence problem with a 384 × 384 uniform grid at t = 3. There are 12
contours for density and pressure. Red–high value, blue–low value. Density ranges from 1.2 to 6.1, pressure
ranges from 0.34 to 6.3. The maximum values of |v| and |B| are 1.7 and 3.0 respectively.
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Figure 4.15: Pressure distribution along the line z = 0.625π at t = 3.

5 Conclusions

The numerical results presented in this paper demonstrate the ability of central schemes to compute the dis-
continuous solutions of ideal MHD equations accurately. Our numerical tests are in excellent agreement with
the results of Jiang and Wu [12], and they complement previous results of Wu-Chang [25] and the more recent
results of Del Zanna et. al. [6, 7] where the efficiency of central schemes is demonstrated for other MHD models.

How one can quantify this efficiency? the answer depends on too many local features — computer code,
hardware and database configurations, ... which prevent a precise quantitative answer. We therefore report
here on our ‘subjective’ results of CPU running time for solving the above Orszag-Tang problem, comparing the
second-order staggered central scheme [11] vs. WENO scheme [12] (fifth order in space and forth in time). The
Jacobian-free form (JFF) of the second-order central schemes offered a speed-up factor of 25 in this case. We
should point out, however, that the second-order results required a refinement of the spatial grid by a factor of
∼ 2, in order to achieve a resolution similar to the fifth order WENO. With the more restrictive CFL condition
— the staggered central CFL condition is ∼ 0.5 rather than 1, this increases the amount of 2D ‘work’ by a factor
8. Thus, the acceleration factor for a given resolution in this case is a factor of ∼ 3. The additional gain offered
by the black-box central solvers lies in their simplicity: neither characteristic decomposition, nor dimensional
splitting is required. The relative ease of implementation is highlighted by the 2D code in the appendix below,
where the intricate eigensystem specified in [12, pp. 570-572] is completely avoided.

Finally, we observe that the lower resolution of our staggered central schemes necessitates further refinement
of the spatial grids in order to achieve the same resolution as higher order upwind methods, resulting in a loss of
efficiency. We will address this issue in a second part of our work on central schemes for MHD equations, where
we use a semi-discrete version of the central schemes introduced in [14, 15] and its higher-order extensions,
consult [3, 17]. This approach retains both the simplicity of implementation and the efficiency of Riemann-
solver-free algorithms.

A Appendix. A Central Code for Two-Dimensional Ideal MHD

Equations

The following C++ code was used to compute the solution of the convective Kelvin-Helmholtz Instability, figures
(4.9)–(4.11). We refer the reader to http://www.math.ucla.edu/˜jbalbas/MHD/code for this two dimensional
MHD code and additional software required for its implementation.

///////////////////////////////////////////////////////////////
// 2nd order Central Scheme for 2-d MHD Equations:
//
// Transverse Kelvin-Helmholtz instability--convective set-up.
//
// Jacobian Free form of Staggered LxF with MUSCL

// type reconstruction
//
// Input: grid size J x K, limiter parameter alpha, CFL number.
//
// Output: density, velocity field, magnetic field, pressure.
///////////////////////////////////////////////////////////////
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int main()
{
//////////////////////////////////////////////////////////
// Grid
//////////////////////////////////////////////////////////

double x_init, x_final, z_init, z_final, t_init, t_final, t;
double dx, dz_eq, dt, lambda;
double alpha, pi;
double gamma=2.0;
double cfl;
double rho_doub, p_doub, A, B, max_eigx, max_eigz;
double e_trans;
long J, K;
long j, k, j1, j2, l;
long mid, s=0;
bool odd=true;

ifstream InFile;
InFile.open("input", ios::in);
if (!InFile)
{

cerr<<"Error in opening input file";
exit(1);

}

InFile>>J;
InFile>>K;
InFile>>cfl;
InFile>>alpha;

CAMdoubleVector x(J+1),z(K+1),dz(K+1),nu(K+1);

pi=4.0*atan2(1.0,1.0);
x_init=-27.5*pi;
x_final=27.5*pi;
z_init=-20.0;
z_final=20.0;
t_init=0;
t_final=145;
dx=(x_final - x_init)/J;
dz_eq=(z_final-z_init)/K;

mid=long(ceil(K/2.0));

x(1)=x_init;

for (j=2; j<=J+1; j++)
x(j)=x(j-1)+dx;

z(1)=z_init;

for (k=2; k<=K+1; k++)
z(k)=z(k-1)+dz_eq;

for (k=1; k<= K+1; k++)
z(k)=20*sinh(z(k)*3/20)/sinh(3);

for (k=1; k<=K; k++)
dz(k)=z(k+1)-z(k);

dz(K+1)=dz(1);

/////////////////////////////////////////
// Solution Variables
/////////////////////////////////////////

CAMdoubleArray v_init(J+1,K+1,8);
CAMdoubleArray vn(J+1,K+1,8);
CAMdoubleArray f(J+1,K+1,8);
CAMdoubleArray g(J+1,K+1,8);
CAMdoubleArray f_p(J+1,K+1,8);
CAMdoubleArray g_q(J+1,K+1,8);
CAMdoubleArray v_star(J+1,K+1,8);
CAMdoubleArray v_p(J+1,K+1,8);
CAMdoubleArray v_q(J+1,K+1,8);
CAMdoubleArray f_star(J+1,K+1,8);
CAMdoubleArray g_star(J+1,K+1,8);
CAMdoubleArray vnp1(J+1,K+1,8);

double vx, vy, vz, cfx, cfz;
CAMdoubleMatrix eigx(J+1,K+1), eigz(J+1,K+1);

CAMdoubleVector vn_vector(8),fluxx(8),fluxz(8),v_star_vec(8);

CAMdoubleVector e_int(42000), time(42000);

double fu, fv, fw, gu, gv, gw, u, v, w;
double vx_init;
double I1, I2, I3 ,I4;

/////////////////////////////////////
// Initial Conditions
/////////////////////////////////////

for (j=1; j<=J+1; j++){
for (k=1; k<=K+1; k++){
vx_init=tanh(z(k));
v_init(j,k,1)=1.0;
v_init(j,k,2)=vx_init;
v_init(j,k,3)=0;
v_init(j,k,4)=0;
v_init(j,k,5)=0;
v_init(j,k,6)=1.0;
v_init(j,k,7)=0;}}

j1=long(ceil(25*pi/dx)+1);
j2=long(ceil(30*pi/dx)+1);

for (j=j1; j<=j2; j++){
for(k=1; k<=K+1; k++)
v_init(j,k,2)=v_init(j,k,2)
-.008*(sin(.4*x(j)))*(1.0/(1.0+pow(z(k),2.0)));}

for (j=1; j<=J+1; j++){
for (k=1; k<=K+1; k++)
v_init(j,k,8)=1.0+.5*pow(v_init(j,k,2),2.0);}

///////////////////////////////////////////////////
// time loop
///////////////////////////////////////////////////

vn=v_init;

double sum_t=0;
double dt_cpu=0;
double t_start=realtime();

do{
for (j=1; j<=J+1; j++){
for(k=1; k<=K+1; k++){

rho_doub=vn(j,k,1);
vx=vn(j,k,2)/rho_doub;
vy=vn(j,k,3)/rho_doub;
vz=vn(j,k,4)/rho_doub;
p_doub=vn(j,k,8)-.5*((pow(vx,2) + pow(vy,2)
+pow(vz,2))/rho_doub)-.5*(pow(vn(j,k,5),2)
+pow(vn(j,k,6),2)+pow(vn(j,k,7),2));
A=gamma*p_doub/rho_doub;
B=(pow(vn(j,k,5),2)+pow(vn(j,k,6),2)
+pow(vn(j,k,7),2))/rho_doub;
cfx=sqrt(.5*(A+B+sqrt(pow(A+B,2)
-4*A*pow(vn(j,k,5),2)/rho_doub)));
cfz=sqrt(.5*(A+B+sqrt(pow(A+B,2)
-4*A*pow(vn(j,k,7),2)/rho_doub)));
eigx(j,k)=fabs(vx)+cfx;
eigz(j,k)=fabs(vz)+cfz;}}

max_eigx=eigx.max();
max_eigz=eigz.max();
dt=cfl/((max_eigx/dx)+(max_eigz/dz(mid)));
lambda=dt/dx;
t=t+dt;

for(k=1; k<=K+1; k++)
nu(k)=dt/dz(k);

for (j=1; j<=J+1; j++){
for (k=1; k<=K+1; k++){
for (l=1; l<=8; l++)

vn_vector(l)=vn(j,k,l);
flux_x(vn_vector, fluxx);
flux_z(vn_vector, fluxz);

for (l=1; l<=8; l++){
f(j,k,l)=fluxx(l);
g(j,k,l)=fluxz(l);}}}

for (l=1; l<=8; l++){
for (k=1; k<=K+1; k++){
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for (j=2; j<=J; j++){
fu=alpha*(f(j+1,k,l)-f(j,k,l));
fv=.5*(f(j+1,k,l)-f(j-1,k,l));
fw=alpha*(f(j,k,l)-f(j-1,k,l));
u=alpha*(vn(j+1,k,l)-vn(j,k,l));
v=.5*(vn(j+1,k,l)-vn(j-1,k,l));
w=alpha*(vn(j,k,l)-vn(j-1,k,l));
f_p(j,k,l)=minmod3(fu, fv, fw);
v_p(j,k,l)=minmod3(u, v, w);}

f_p(1,k,l)=0;
f_p(J+1,k,l)=0;
v_p(1,k,l)=0;
v_p(J+1,k,l)=0;}

for (j=1; j<=J+1; j++){
for (k=2; k<=K; k++){

gu=alpha*(g(j,k+1,l)-g(j,k,l));
gv=.5*(g(j,k+1,l)-g(j,k-1,l));
gw=alpha*(g(j,k,l)-g(j,k-1,l));
u=alpha*(vn(j,k+1,l)-vn(j,k,l));
v=.5*(vn(j,k+1,l)-vn(j,k-1,l));
w=alpha*(vn(j,k,l)-vn(j,k-1,l));
g_q(j,k,l)=minmod3(gu, gv, gw);
v_q(j,k,l)=minmod3(u, v, w);}

g_q(j,1,l)=0;
g_q(j,K+1,l)=0;
v_q(j,1,l)=0;
v_q(j,K+1,l)=0;}}

///////////////////////////////////////
//predicted values
///////////////////////////////////////

for (j=1; j<=J+1; j++){
for (k=1; k<=K+1; k++){
for(l=1; l<=8; l++){

v_star(j,k,l)=vn(j,k,l)-.5*lambda*f_p(j,k,l)
-.5*nu(k)*g_q(j,k,l);
v_star_vec(l)=v_star(j,k,l);}

flux_x(v_star_vec, fluxx);
flux_z(v_star_vec, fluxz);

for (l=1; l<=8; l++){
f_star(j,k,l)=fluxx(l);
g_star(j,k,l)=fluxz(l);}}}

////////////////////////////////////////
//corrected values
////////////////////////////////////////

if(odd){
for (j=1; j<=J; j++){
for (k=1; k<=K; k++){
for (l=1; l<=8; l++){

I1=.0625*(v_p(j,k,l)-v_p(j+1,k,l))
-.5*lambda*(f_star(j+1,k,l)-f_star(j,k,l));
I2=.0625*(v_p(j,k+1,l)-v_p(j+1,k+1,l))
-.5*lambda*(f_star(j+1,k+1,l)-f_star(j,k+1,l));
I3=.0625*(v_q(j,k,l)-v_q(j,k+1,l))
-.5*nu(k)*(g_star(j,k+1,l)-g_star(j,k,l));
I4=.0625*(v_q(j+1,k,l)-v_q(j+1,k+1,l))
-.5*nu(k)*(g_star(j+1,k+1,l)-g_star(j+1,k,l));
vnp1(j,k,l)=.25*(vn(j+1,k,l)+vn(j,k,l)
+vn(j+1,k+1,l)+vn(j,k+1,l)) +I1+I2+I3+I4;}}}

for (k=1; k<=K; k++){
for(l=1; l<=8; l++){

I3=.125*(v_q(J+1,k,l)-v_q(J+1,k+1,l))

-nu(k)*(g_star(J+1,k+1,l)-g_star(J+1,k,l));
vnp1(J+1,k,l)=.5*(vn(J+1,k,l)+vn(J+1,k+1,l)) +I3;}}

for (j=1; j<=J; j++){
for(l=1; l<=8; l++){

I1=.125*(v_p(j,K+1,l)-v_p(j+1,K+1,l))
-lambda*(f_star(j+1,K+1,l)-f_star(j,K+1,l));
vnp1(j,K+1,l)=.5*(vn(j+1,K+1,l)+vn(j,K+1,l)) +I1;}}

for (l=1; l<=8; l++)
vnp1(J+1,K+1,l)=vn(J+1,K+1,l);

vn=vnp1;
odd=false;}

else{
for (j=2; j<=J+1; j++){
for (k=2; k<=K+1; k++){
for (l=1; l<=8; l++){

I1=.0625*(v_p(j-1,k-1,l)-v_p(j,k-1,l))
-.5*lambda*(f_star(j,k-1,l)-f_star(j-1,k-1,l));
I2=.0625*(v_p(j-1,k,l)-v_p(j,k,l))
-.5*lambda*(f_star(j,k,l)-f_star(j-1,k,l));
I3=.0625*(v_q(j-1,k-1,l)-v_q(j-1,k,l))
-.5*nu(k)*(g_star(j-1,k,l)-g_star(j-1,k-1,l));
I4=.0625*(v_q(j,k-1,l)-v_q(j,k,l))
-.5*nu(k)*(g_star(j,k,l)-g_star(j,k-1,l));
vnp1(j,k,l)=.25*(vn(j,k-1,l)+vn(j-1,k-1,l)
+vn(j,k,l)+ vn(j-1,k,l)) + I1+I2+I3+I4;}}}

for (k=2; k<=K+1; k++){
for (l=1; l<=8; l++){

I3=.125*(v_q(1,k-1,l)-v_q(1,k,l))
-nu(k)*(g_star(1,k,l)-g_star(1,k-1,l));
vnp1(1,k,l)=.5*(vn(1,k-1,l)+vn(1,k,l))+I3;}}

for (j=2; j<=J+1; j++){
for (l=1; l<=8; l++){

I1=.125*(v_p(j-1,1,l)-v_p(j,1,l))
-lambda*(f_star(j,1,l)-f_star(j-1,1,l));
vnp1(j,1,l)=.5*(vn(j-1,1,l)+vn(j,1,l))+I1;}}

for (l=1; l<=8; l++)
vnp1(1,1,l)=vn(1,1,l);

vn=vnp1;
odd=true;}

e_int(s)=0;
for(j=1; j<=J+1; j++){
for(k=1; k<=K+1; k++){

e_trans=.5*(pow(vn(j,k,4),2.0)/vn(j,k,1))*dx*dz(k);
e_int(s)=e_int(s)+e_trans;}}

time(s)=t;
s++;

dt_cpu=realtime()-t_start;
sum_t=sum_t+dt_cpu;
t_start=realtime();

}while(t<t_final);

writeout(vn,x,z,J,K);

return 0;
}
///////////////////////////////////
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[7] Del Zanna L., Bucciantini, N. and Londrillo, P.: (2003): An Efficient Shock-Capturing Central-type Scheme
for Multidimensional relativistic flows II. Astronomy and Astrophysics. 400, 397–413.

[8] B. Engquist and O. Runborg, (1996): Multi-phase computations in geometrical optics, Journal of Compu-
tational and Applied Mathematics 74 175-192.

[9] Harten A., Engquist B., Osher S. and Chakravarthy, S.R.: (1987): Uniformly High Order Accurate Essen-
tially Non-Oscillatory Schemes III. JOURNAL OF COMPUTATIONAL PHYSICS, 71, pp.231–303.

[10] D.R. van der Heul, C. Vuik and P. Wesseling,: (2002): A conservative pressure-correction method for the
Euler and ideal MHD equations at all speeds, International Journal for Numerical Methods in Fluids 40,
pp. 521–529.

[11] Jiang G.-S. and Tadmor E.: (1998): Nonoscillatory Central Schemes for Multidimensional Hyperbolic
Conservation Laws. SIAM J. SCI COMPUT., Vol. 19, No. 6, pp.1892–1917.

[12] Jiang G.-S. and Wu C.C.: (1999): A High-Order WENO Finite Difference Scheme for the Equations of
Ideal Magnetohydrodynamics. JOURNAL OF COMPUTATIONAL PHYSICS, 150, pp.561–594.

[13] S. Jin and Z.-P. Xin, : (1994) Numerical Passage from Systems of Conservation Laws to Hamilton–Jacobi
Equations and Relaxation Schemes, SIAM JOURNAL ON NUMERICAL ANALYSIS 35, pp. 2385–2404.

(Pages 2385 - 2404)

[14] Kurganov A. and Tadmor E.: (2000): New high-resolution central schemes for nonlinear conservation laws
and convection-diffusion equations JOURNAL OF COMPUTATIONAL PHYSICS 160, pp. 214–282.

[15] Kurganov A., Noelle S. and Petrova G.: (2000): Semi-discrete central-upwind schemes for hyperbolic
conservation laws and Hamilton-Jacobi equations SIAM JOURNAL on SCIENTIFIC COMPUTATING
23, pp. 707–740.

[16] van Leer B.: (1979): Towards the Ultimate Conservative Difference Scheme V.A. Second Order Sequel to
Godunov’s Method. JOURNAL OF COMPUTATIONAL PHYSICS, Vol. 32, pp.101–136.

[17] Levy D., Puppo G. and Russo G.: (2002): A Fourth Order Central WENO Scheme for Multidimensional
Hyperbolic Systems of Conservation Laws. SIAM JOURNAL OF SCIENTIFIC COMPUTING, No. 24, pp.
480–506

[18] Liu X.-D. and Tadmor E.: (1998): Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation
Laws. NUMER. MATH., 79, pp.397–425.

[19] Nessayahu H. and Tadmor E.: (1990): Non-Oscillatory Central Differencing for Hyperbolic Conservation
Laws. JOURNAL OF COMPUTATIONAL PHYSICS, Vol. 87, No. 2, pp.408–463.

[20] Orszag S.A. and Tang C.M.: (1979): Small-scale structure of two-dimensional magnetohydrodynamic
turbulence, journal fluid mechanics 90, pp. 129–.

[21] Picone J.M. and Dahlburg R.B.: (1991): Evolution of the Orszag-Tang vortex system in a compressible
medium II. Supersonic flow, PHYSICS FLUIDS B, 3, pp. 29–.

22



[22] Powell K. G., Roe P. L., Myong R. S., Gombosi T. and de Zeeuw D.: (1995): An upwind scheme for
magnetohydrodynamics, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA, June
19-22, pp. 661–674.

[23] Tang H-Z. and Xu K.: (2000): A High-Order Gas-Kinetic Method for Multidimensional Ideal Magnetohy-
drodynamics, JOURNAL OF COMPUTATIONAL PHYSIC, 65, pp. 69-88.

[24] Wu C.C.: (1990): Formation, Structure, and Stability of MHD Intermediate Shocks. JOURNAL OF
GEOPHYSICAL RESEARCH, Vol. 95, No. A6, pp. 8149-8175

[25] Wu C.C. and Chang T.: (2001): Further Study of the Dynamics of Two-Dimensional MHD Coherent
Structures–a Large Scale Simulation. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL
PHYSICS, Vol. 95, pp. 1447-1453

23


